
AD-Ai36 595 THE TOTAL FIELD INCCOLLECTIVE BREMSSTRAHLUNG IN A 1/1
MNONEOUILIBRIUM RELATIVISTIC BEAM-PLASMA SYSTEM(U HARRY

DIAMOND LABS ADELPHI MD H E BRANDT qEP 81 HD PL-T-996

UNCLASSIFIED 
FG2/,N

ELEIIEEElEE
IlmfIIIIIIIIIIfllfllIf



m~hI=

II 5 1. 4

iui

MICROCOPY RESOLUTION TEST CHART
NATIO4AL BUREAU Of S"ANDARDS-1963-A

L

i

o



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (1111bo Does Banero

REPOR DOCUMENTATION PAGE READ INSTRUCTIONS

r. REPORT MNMERt2 GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

HDL-TR-19M vip6s
4. TITLE (sind ubans)S.TPOFRPTItEIDCVRD

The Total Field In Collective Bremsstrahlung in a Nonequilib- Technical Report
rium Relativistic Beam-Plasma System 6- PERFORMING ORG. REPORT NUMBER

7. AUTHN(s) S.CONTRACT OR GRANT NUMBER(m)

Howard E. Brandt

9. PERpORamING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Harry Diamond Laboratories AREA & WORK UNIT NUMBERS

2800 Powder Mill Road Program Ele: 61101 A
Adeiphi, MD 20783

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U.S. Army Materiel Development and September 1983
Readiness ommand IS. NUMBER OF PAGES

Alexandria, Va 22333 34
14. MONITORING AGENCY NAME A AODRESS0 silime, hose Conereff,4 am..c) IS. SECURITY CLASS. (of this "wPoo)

UNCLASSIFIED
IS.. DECLASSI FICATION/DOWNGRADING

to. DISTIBUTION STATEMENT (of Of*. RPMt)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of Me. absract mimed I Block it, different from Aepoft)

1S. SUPPLEMEMY1INANY NOTES

kiDL Project: A10225
DRCMS Cods: 611101.91 A9011I
DA Project: 1 L161 1OIA91A

IS. KEY WORDS (Conamie an revrse aio It necesarmW 1~11 b~iy h block mmbor)

Radiation Relativistic electron beams
Microwaves Radiative Instability
Plasma turbulence Bremestrahiung
Relativistic plasma Beam-plasma systems
Plasm physics Nonlinear plasmas _____________________

ISTACr (bio mevese alf It ueemmy aind fdowidIr hr block number)

S!vAn expression Is obtained for the total electric field associated with collective bremsstrahlung
In a nonequilibrium relativistic beam-plasma system in the case of a slowly varying, nearly
spatially Independent background distribution with no external fields. The field is assumed 'to con-
slst of an unperturbed regular part corresponding to the nonradlative part of the field of the par- I
ticls and a stochastic part corresponding to the bremsstrahlung radiation field. The relations
derived here are needed In calculations of collective bremsstrahlung processes and the condi-
tionis for the occurrence of bremsstrahiung radiative instability In relativistic beam-plasma
systems.,

DD PUS7S EITION OW f NOV 155 O@GOLETZ NLASFE

SECURITY CLASSIFICATIONI OF THIS PAGE (WManes UnforoOin

.~~iA--e -11-



CONTENTS

Page

2. DISPERSION RELATION FOR THE BRE!4SSTRAHLUNG FIELD ........... so......... 6

3. THE STOCHASTIC PROPERTIES OF THE BREMSSTRAHLUNG FIELD ..... o.......... 11

4. THE FIELD DUE TO THE PERTURBED TEST PARTICLE TRAJECTORY ... ........... 13

5. THE FIELD DUE TO THE DYNAMIC POLARIZATION CURRENT .... *................ 18

6. THE TOTAL FIELD o ... o.os.......... ......... 22

7DIS CONCU ION . .. . . .. .. o .. .. . . . ... o.* . .. o . . ... .. .......... o ............ ** ** ** 23

Accession For

GTT OA&I
PTTC TAB
uz'annou-ced

Distrib~ution/

Availability Codes

jAvail and/or

Dist Special

3



1. INTRODUCTION

In a nonequilibrium relativistic beam-plasma system with a slowly varying,
nearly spatially independent background distribution without external fields,
the total field, excited in the beam-plasma and associated with a collective
bremsstrahlung process involving a test particle, has two parts. First, it
has a regular part with a relatively slowly varying phase associated with the
nonradiative field of the test particle and its induced dynamic polarization,
and it also has a stochastic part with an irregular rapidly varying phase
associated with the bremsstrahlung radiation field.1  Thus, the Fourier trans-
form of the total field involved in the bremsstrahlung process is given by

Ek= + t I (

where and 9t are the regular nonradiative component and the stochastic
bremsstrahlung component, respectively. The regular part, , of this field
is assumed to consist of four parts in sufficient approximation; namely,

+R4(1) +(2) +1) +(2)
kEk + F ) + Edpk + 4pk . (2)

Here jI) is the self-field associated with the unperturbed motion of the
relativistic bare test particle, ignoring its induced dynamic polarization.
The f ield 2) is the field associated with the perturbation in the bare
particle'motion. The fields E(1 and t(2) are fields produced by the dynamicdpk dpk
polarization current induced by the test particle to second and third order in
the total field, respectively.

In sections 2 through 5, the dispersive characteristics and stochastic
properties of the bremsstrahlung field are reviewed, the field due to the
perturbed bare test particle trajectory is calculated from the associated
current, and the dynamic polarization current is used to calculate the field
which it induces. In section 6 an expression for the total field is obtained,
and in section 7 the results are summarized. Expressions for these fields are
needed in calculations of the total nonlinear force on a relativistic test
particle involved in collective bremsstrahlung in a nonequilibrium beam-plasma

IA. V. Akopyan and V. N. Tsytovich, Bremsstrahlung in a Nonequilibrium
Plasma, Fiz. Plazmy, 1 (1975), 673 [Soy. J. Plasma Phys., 1 (1975), 371].
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system.' *'$ The latter is needed in calculations of collective bremsstrah-
lung processes and the confitions for the occurrence of a bremsstrahlung
radiative instability. 1-4'ot

2. DISPERSION RELATION FOR THE BREMSSTRAHLUNG FIELD

In zeroth approximation the dispersive properties of the bremsstrahlung..,
radiation field 2V are governed by the poles of the linear photon Green's
function G (k) for the beam-plasma. The latter determines the mode disper-
sion relat ns. Thus,

+st +0(0)(3
Ek - Ek(3

where the electromagnetic waves q(0) of mode o satisfy the following disper-
sion relation:

IUG (k)j = 0 • (4)

The linear photon Green's function Gmn(k) follows from the linear Maxwell's
equations in the beam-plasma system, namely,

(5)

and

IA. V. Akopyan and V. N. Tsytovich, Bremsstrahlung in a Nonequilibrium
Plasma, Fiz. Plazmy, 1 (1975), 673 [Sov. J. Plasma Phys., 1 (1975), 371).

2A. V. Akopyan a;d V. N. Tsytovich, Transition Bremsstrahlung of Relati-
vistic Particles, Zh. Eksp. Teor. Fiz., 71 (1976), 166 [Soy. Phys. JETP, 44
(1976), 87).

3A. V. Akopyan and V. N. Tsytovich, Bremsstralung Instability of Relati-
vistic Electrons in a Plasma, Astrofizika, 13 (1977), 717 [Astrophysics, 13
(1977), 423).

V. N. Tsytovich, Collective Effects in Bremsstrahlung of Fast Particles
in Plasms, Comments, Plasm Phys. Conf. Fusion, 4 (1978), 73.

*H. E. Brandt, Nonlinear Force on an Unpolarized Relativistic Test
Particle to Second Order in the Total Field in a Nonequilibrium Beam-Plasma
System, Harry Diamond Laboratories, HDL-PRL-82-7 (May 1982) (to be published
as HFL-TR-1995, 1983).

H. E. Brandt, Nonlinear Dynamic Polarization Force on a Relativistic Test
Particle in a Nonequilibrium Beam-Plasma System, Harry Diamond Laboratories,
HDL-PRL-82-6 (May 1982) (to be published as HDL-TR-1994, 1983).

f. B. randt, Theoretical Methods in the Calculation of the
Bremestrahlung Recoil Force in a Nonequilibrium Relativistic Beam-Plasma
System, Harry Diamond Laboratories, HDL-PRL-83-6 (April 1983) (to be published
as HDL-TR-2009, 1983).
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+ 3B(6

The Fourier decomposition of the fields is given by

E J dkei(tr+ it) (7)

and

B dk B ei("4 Wt) ,()

where

dk =d V d w .(9)

The assumed forms of the constitutive relations for the beam-plasma system are

+ B (10)Hk-)J

where U0is the permeability of free space, and

D = £-ij(k)Ekj ,(1

where C* (k) is the dielectric tensor for the beam-plasma system, and sum-
mation over repeated indices is understood. From equations (5), (10), and
(11) it follows that

I.

.~(ixBkj 1 + iwcij(k)Ekj = )ki ,(12) .

where Tkis the Fourier transform of the nonlinear and external current densi-
ty, ard from equation (6)

+ (13)

Here 85 is a small imaginary part of the frequency. Next, substituting equa-
tion (13) in equation (12), then

i 4
B + k ),i + iwcijEkiki ( (1)

But one has the following vector identity,

1txxk) = k2+ (15)

Substituting equation (15) in equation (14), then

%'-

whre i~k i te ieecri tnsr orth bamplsm sstman sm-7
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-(Z'Eki k 2 Eki) + iwcijEkj = ki 16)

Equation (16) may be rewritten as

G!jJ - j (17)

where 'VP

I) -P(w + ia) 2  6ij) + Cij(18)

where 6.. is the Kronecker delta. For a spatially isotropic system, the
dielectric permittivity tensor is given by

5'67

ck,+1) = (6ij - k2 )et(Z,w) + kikj (kw) , (19)"

where t and cL are the transverse and longitudinal permittivity, respec-
tively. Substituting equation (19) in equation (18) and combining terms, then

-1 2)tk2 k2  kikj

0"~w + idL2 -1 ( + i~i k 2  
*(0

Treating equation (17) as a matrix equation, then

i
Eki - GijJkj . (21)

w+ i6
The matrix G inverse to Gj' is easily obtained from equation (20); namely,i i

Gij - - + --k. (22)

G Ct Ct(w + i6) 2  k I2  j) (22'J m k.. 6j -[
Po

Checking that equation (22) is in fact the inverse, one notes, using equations
(20) and (22), that

SA. I. Akhiezer, I. A. Akhlezer, R. V. Polovin, A. G. Sitenko, and K. N.
Stepanov, Plasma Electrodynamics, 1, Linear Theory, Pergamon Press (1975),
206.

6V, N.. Tsytovich, Nonlinear Effects in Plasma, Plenum Press, New York
(1970), 31.

7V. N. Taytovich, Theory of Turbulent Plasma (Consultants Bureau), Plenum
Press, Now York (1977), 63-65.
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Gm Gi j- C.t. -- (Ct C -. .

K~ G +i IJ(w + I5 kc2 J (23)

-1 - 2\ -i - I2 k

x k-€,+ ij _'-] = 6mj
Lk2 C Ct(W +9 ia) 2  k 2 ( 6 i - -;*)-,

110'

as it must. Equation (21) can be equivalently written in the following form:

n-- i
F+ i GnuJkm , (24)

since the linear photon Green's function equation (22), for the isotropic
plasma is a symmetric tensor. According to equation (4), the poles of this
function determine the zeroth order dispersion relation for the bremsstrahlung
in the isotropic case.

More generally the dielectric tensor is related to the linear conductivity
tensor by

i (k)

Ci= j o6 i_. + w i (25)

Equation (25) follows through a comparison of equation (12) with the vacuum

form of Maxwell's equations; namely,

if +

Pi (Z x B)i + iwEFr6ijEkj = (ij(k)Ekj + Jki ' (26)

where the explicit linear current in terms of the linear conductivity has been
introduced on the right,* Jki designates the nonlinear and external contribu-
tions to the current, and the vacuum dielectric tensor has been introduced.
Thus, moving the first term on the right of equation (26) to the left and
comparing with equation (12), then equation (25) follows.

By equation (47) of HDL-TR-1 994,* the linear conductivity tensor oij in
the beam plasma system is given by

+ [ k.vs kmvsj 3fR(O)
dOs vsi 6jm1 w+ i6/ + + i0i Ps (27)oi j -Ze .2 7 ,i,, " -

if- (2) i(w k-vs + i6) aPsm

*H. E. Brandt, Nonlinear Dynamic Polarization Force on a Relativistic Test
Particle in a Nonequilibrium Beam-Plasma System, Harry Diamond Laboratories,
HDL-PRL-82-6 (May 1982) (to be published as HDL-TR-1994, 1983).
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Here, a is a species label. Substituting equation (27) in equation (25), then
the linear dielectric tensor for the beam-plasma system is given by

+ Fl kvjL_ + kmvsj R(0'
Ci %ij+ -a1 e fd s V 16j,~ T d + i] P

CWj + jAdI f (2s)3  (a- v +i6) 3Psm '(28)
5 I..

in which case equation (18) becomes

1] +-i; ) (kk- - k 2  .j ) +

Fl 1t ~ kmVs*1 aR(0)I ~svsi LSjmYl + i6 W + afj P (29)
+W+- i6rles ( - "s + i w "

T~)' W+ i6 sm

It should be noted that equations (27), (28), and (29) are in fact symmetric
in i and j which follows after a simple integration by parts. The zeros of
the determinant of the matrix equation (29) must give the dispersive prop-
erties of the bremsstrahlung field.

From equation (19) one has that

kik.

= k2  ,j •(30)
£ k2  1)i

and

'C = (Cii - si)(31)

Substituting equation (28) in equations (30) and (31), then in the spatially
isotropic case, the longitudinal and transverse dielectric permittivity are
given bV

+ + k)3s~ (32)
(0+ i9 k 2) W- Z's + i6 P

and

1 ye fd? + kvs kav -km fR(O)

2( 1) aT (2w)3 L -t4 5 + 6 m apsm

If the background distribution functions fR(O) are also isotropic in momentumPs
space, then they depend only on particle energy; namely,

fR(O) = fR(o)(6 ) (34)
p P s 

-
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where

=(p2c 
2 + a r1c4)1/2 (35)

Then

afR0 afR(O) s  R(0) pfR(0P"a sC2 V (sm
apsM = s s3  - Vsm 6)cs

Substituting equation (36) in equation (28) and simplifying, then for the case
of isotropy in momentum space, one has

R(0)
1 d~p's v afcij -=oi + Ee 2  - VsiVs Ps

W + i6- s-  (2w) 3 v • (37)s (w) (W - kOvs + is) acs

Substituting equation (37) in equations (30) and (31), then in the case of
isotropy in momentum space, the longitudinal and transverse dielectric permit-
tivity are given by

1 d 3pksvs)2

El = £0 + - (38)
+ '2/ J2 (2w) 3 w- kvs + is

and

1 1d- 3 p v 2 - P s
e t_ _ _ _ _ ( jv i -) 2 / k 2 _ _ _

i.- (2W) 3  W - kov s + is ae (39)

and the zeros of the determinant of equation (20) along with equations (38)
and (39) then give the dispersion relation for the bremsstrahlung in this
case*

3. THE STOCHASTIC PROPERTIES OF THE BREMSSTRAHLUNG FIELD

As stated earlier, it is to be assumed that the bremsstrahlung field re-
sulting from the particle scattering in the system is stochastic, having an
irregular rapidly varying phase. 1 To the needed order, the phase of the
stochastic bremsstrahlung field is assumed to change randomly during a typical
interaction period, and the time average is assumed to be the same as the
average over the stochastic ensemble. In particular it is assumed that for
this stochastic field the following averages over the statistical phase
distribution apply approximately; namely,

1A. V. Akopyan and V. N. Tsytovich, Bremsstrahlung in a Nonequilibrium
Plasma, Fiz. Plazmy, 1 (1975), 673 [Soy. J. Plasma Phys., 1 (1975), 371).
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st -"<i> 0 (40)0
st stj t 2 6(k + k ()ekie~j (41)<Ekijkl > = j (41 "e"

where e is the unit polarization vector for the stochastic field.

Equations (40) and (41) are deduced as follows. Representing the stochas-
tic electric field in terms of its modulus, Ak, and phase, , one has

stisn •4,-E = ekiAke = ekiAk(cos k + i sin (42)

stTherefore, the average over the statistical phase distribution <Eji> is given
by

<(E> = ekiAk(<cos k + i sin k>) (43)

But assuming random phase to the needed order, then clearly

<cos $k> = <sin > 0 (44)

and equation (43) becomes equation (40). Similarly,

stst -i ,
<Eji 0JZ = eke.,. AA,.,e e > . (45)

But

<e e > =<e > = 6'k (46)

since it is vanishing unless k = k' and unity when k = k'. Substituting
equation (46) in equation (45), using the property of the Kronecker delta,+* + ."-
denoting k' by -kl, and usiag the reality property of the field (E k =Ek

then

st st (47)Eki El j > = e,. (47)
< ek cietjAqc .kk.

Next, one may define the quantity IEtI in terms of the modulus Ak by
It126(k + k1) = 6 klk " (48)

Then substituting equation (48) in equation (47), equation (41) follows.

Furthermore, using equation (3) in equations (40) and (41) one has for the
stochastic properties of the bremsstrahlung radiation field the following:

<( 0)> 0 (49)
a.(o) 0(o) y , * 0 (0)1 6(k + kj)(0)-:

eii elj > = Iekiekj I+ ) (50)

where + is the unit polarization vector for mode a.

12
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4. THE FIELD DUE TO THE PERTURBED TEST PARTICLE TRAJECTORY

The trajectory of a relativistic test particle of species a moving through
the beam-plasma system is given by

ra =,at + ArQ , (51)

where va is the unperturbed velocity and At and &A describe the perturbation
in the trajectory and the velocity, respectively. Provided the conditions for
the plasma Born approximation are satisfied--namely, that the relativistic
particle momentum be much greater than the electromagnetic impulse received by
the particle in a time interval given by the inverse electron plasma frequen-
cy--then the perturbed motion is given by equation (36) of HDL-TR-1995:*

ea f d3Jt din- 4.. +i ~~S} (n44)t
Jom (Wit -V+a + i6)2  W+i 6

(52) IN

,+ +"-'v

Va*, e

yd 2  i t.+. + i6) 2  .,a'k

Here ea, ma, and v. are the charge, mass, and unperturbed velocity of the test
particle, respectively. (For notational convenience, the naught in HDL-TR-
1995 is dropped here.) The unperturbed relativistic factor ya is given by

- fi - (2 (53)

The perturbation in the velocity is given by equation (35) of HDL-TR-1995:*
+ -i (W44.v)t...

Av~a =e d d +t e

f V di- na + i (

-~ '~ ca 2 - Z.+ + is

The ith component of A&,, equation (54), can be equivalently rewritten as
follows:

*H. E. Brandt, Nonlinear Force on an Unpolarized Relativistic Test Parti-
cle to Second Order in the Total Field in a Nonequilibrium Beam-Plasma System,
Harry Diamond Laboratories, HDL-PRL-82-7 (May 1982) (to be published as HDL-
TR-1995, 1983).
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The current density due to the actual charge of the test particle is then J'

given by
AV e( + V )va a ( -vt- (56)

Expanding the delta function in equation (56) for small a' then to lowest

v a

order in a'
= e + a -k+t) -v. (57)a3) - +ata (59)

= e 63 (- -+at) - va.63( +t)] (5)

The Fourier components of these currents at the position of the test particle

+ +0 +(2

,() = [_3 dt j()( , e Ci1 .4-w) .(2

Jc~~i ] (2) j ~ - i (1

Substituting equation (59) in equation (61) and integrating over the deltafunction, then

(1) eav a .dt -) t

J(2) I -i 0ti e (63)

~ai=(2w)3

Next, recognizing the integral form of the delta function appearing in equa-
tion (63), then

ak i f (2) 3  (

_- .i $ ,,. * , ',' ;..' ..'. .. . * ... ... -. - .- ".-. ..... *..,.** . ,-*., ,, ,-. ," ,.. -" , * ,, . . v ,. ' ,..- --. ". ,-.'- ,.- '

Susiuigeuto 5) in eqato (6 )adita tigovrte et

function, thens

.- 1) e~ ava t-~j-+-



Next, substituting equation (60) in equation (62) one has

(2) fd3r dt 6 3 + _+ (k.-t)=] f(2) e, AV i (r V t)e- i

- 3 Jt v6
3 ( + t)]e-i(k 'r-t) (65)

The second integral in equation (65) can be simplified by integration over
space by parts and dropping surface terms. Equation (65) becomes

,(2) d 3r+.<dt e+_ [a. -3,+,+
(ie fAv (6 (r -Vt)e

- i

fd 3r dt eevj6 3 (r _ t)it-A e-i@(Zo Wt) (66)
(2w,)4 aa

Integrating over the delta functions, then

• (2) [ dt " 4

3ki = + (26))

- i f dt evie-i(kov.-w)t oN (67)

( 2 1r) 
4 

'

Next, substituting equations (52) and (55) in equation (67) and integrating
over the time, then

Jki = vair C - f - [E)d kl j
+

ci IJ(2- )I (w)3 + kiso)

"k 1 -W, t i )J-+a)
+ k1 i +i6 +

+ - kvI + is (68)

+ i ., d _, dw, [lt °%k (1 + + 1__ei6) d 
+

d] ___ ___ _ 1___ _°_1+_i_ __

+ 0 f (2w) 3  ( t - +i K . i6] 2

x 6(- "1- (- } ]° )¢it--- ~~(i - 1*v + i6)2I  ' (1%

6(- W, it +

yVmap2  ( 2w) 3  (w, - + tlc+ i6) 2

Simplifying equation (68), then

15 .
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(2) ie. f d3kdw --k- 6(w- -. i.,
- Ycs% J (2w) 3 w + i 1 I

X vaivaj I * ,a vaivj kliVaj

+ij 2 it + (69)

k8 c (,- t Vv 6c2 W v + i

=1 - i O a + (i - it va + i6) 2  c 2 (w - O +i

Usinj the property of the delta function to replace (w - . a)by
(w- f-v.) in the fourth, fifth, and sixth terms of equation (691, then a*

(2)= ie- f-d 3 k~dw E 6(ww- - + w 1 0)d i -y - J- 1 ( 2 ) 3 1 * + i s t a

kj .v(i) + kliV 1°ivivaj v

x aiJ + v+ + _ _ 2 - (70)
w- It-V+a + is + (w - ita + i6) 2  c

+ +-~~ ~~~ *1 avaivaj W1i vtia :

(- w t,+. + i6)c 2  C2 (ol - t1 .+ + i6) 2

Changing the integration variable kI = (w1 't1) to -kI, equation (70) becomes

(12) = fe d-x dw -k1j + - + 14
iaki Y cImaJ(2w)3 -W1 + is s(w + (it iti)

i + kjvai - kliVaz 4*l1vaivaj viv j

to it (+ + is + i6)2  c 2  (71)

zt 0+ its
I "avvai cj W, "avaivaj }

-2( +t41 -iS + c2 (+a tlc - i 6 )2f

Combining terms and using the property of the delta function, one notes that

_ i vv 1 " avaivo
- vit1 'rv )

IcC (w) -2 k~v~ itS)c 2

() .;v (w 1 .+V V.a WW1 (2

+c1 (1 -' i 4" - i+) = v( + - - ") c 2 (w - t.%t + i6)2

Substituting equation (72) in equation (71) and using the reality property of
the field A C0' then

16
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--1
*q

J~ ~~ dk ie( 1 °va IVaA *(klfk -  (73)f11 _i c . _

of(2w)3 w- i6

where

() + ~ -k 1 1 Vv~j (t-t 1
e a  V Oik j  -kliVaj vcv0 ( £ 2 1  ['[

I ++a i i)W- it.va- is (W - k.Vc- i6) 2  )
The curt ( ae(2)i by equations (64) and (73) are the cur-

rents associated with the unperturbed motion and the perturbation in the
motion, respectively, of the bare particle. By the same arguments leading to
equation (21), the components of the field due to the unperturbed and pertur-
bed test particle trajectory are given by

(1) (75) (1
Nn+i nJkm (75) v-.

and

(2)i(2Nn+ i nmkm ( (76)

respectively. Therefore, substituting equations (64) and (73) in equations ,:
(75) and (76), one obtains

41)  ~ie,

En (20)3(w + i6) anm

and

e*

2)K. - e a Gn (k) f (klk)6(w + w,- Z -V+ 1°.)

(2) 3 (w + is) m -i6

(78)

Equations (77) and (78) agree with equations (16) and (17) of Akopyan and
Tsytovich, 1975,1 except for erroneous overall factors of (2w)- 3 and (2w)- 3i

appearing there in equations (16) and (17), respectively. The indices n and m
are interchanged there as they are in the defining relation, equation (14) of
Akopyan,I compared to equation (21) here. However, a spatially isotropic
plasma is assumed there, so according to equation (22) the Green's function is
symmetric, namely Gmn = Gnm. Also in Akopyan, 1 single-wave particle resonance
is ignored, in which case the small imaginary part i6 in equation (74) is

IA. V. Akopyan and V. N. Tsytovich, Bremsstrahlung in a Nonequilibrium
Plasma, Fiz. Plazmy, 1 (1975), 673 [Sov. J. Plasma Phys., 1 (1975), 371].
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ignorable, A(.) becomes effectively real, and the complex conjugate sign in
equation (78TJmay be removed. The additional factors of (4w)(2r)3 in equation
(16) and (4w) in (17) there are due to the Gaussian form of Maxwell's equation
used there compared to the MKS form used here, and to the difference in Fouri-
er transform convention. For example, in equation (5) of Akopyan and
Tsytovich, 1975, 1 the Fourier transform convention employed has a factor of
(2w) -3 in the inverse Fourier transform in the integration over the three- '"
dimensional wave vector space, and a factor of 1 for the integration over
frequency, giving a total factor of (2w) - 3. In this report, a total factor of
1 is used, as in equation (7), for example. Likewise, the Fourier transform
itself then has a factor of (2w)- l there and (2w) -4 here, as in equation (61),
for example.

5. THE FIELD DUE TO THE DYNAMIC POLARIZATION CURRENT

The Fourier transform of the dynamic polarization current to third-order
induced in the beam-plasma is given byll*

+0 +(2) +(3) (79)
Jdpk = Jdpk + J dpk + J dpk"(79)"•

The linear polarization current densityIk( ) is given by
Jddpi

( = oft)k)k (80)

Its effects are manifest in the linear Green's function for the beam-plasma
system as discussed in secton 2. The second-order and third-order polar-
ization current densities J(p and j( are given by

( fdki  - ki - k2),(
idp + i81W2 + i6) ijLtk'kl'k 2 )EljEk(

and

(3) = es dki dk2 dk 3 6(k - k1 - k 2 - k 3 )

- sj (W1 + i6)(w2 + i6)(W3 + i6) (82)

(S Xm(k,k,k 2 ,k 3 )Ekj2 E 3m

respectively. The seconJ-order nonlinear and third-order nonlinear conductiv-
ities for species s, S'n, and E! , respectively, are given by

1A. V. Akopyan and V. N. Tsytovich, Bremsstrahlung in a Nonequilibrium
Plasma, Fiz. Plazmy, 1 (1975), 673 [Sov. J. Plasma Phys., 1 (1975), 371).

*H. E. Brandt, Nonlinear Dynamic Polarization Force on a Relativistic Test
Particle in a Nonequilibrium Beam-Plasma System, Harry Diamond Laboratories,
HDL-PRL-82-6 (May 1982) (to be published as HDL-TR-1994, 1983).
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d 36.

+Vjkim a k~ R(O)
si] ~sc. w~ 2  vs +1 TPSn P

and

V. 3p.

Efd)= (2k, - - + [ (w, V + k .vsjl

as 1 [,(R(0)

2 - - + is X 2  . (84)

14.
(2uvs 2t) q- IIi[S . -( 3 V 5  S

x-su 3 - 't C*S + i6

+ kvsm] fR(o) .
o9Psq

The function fR(O) is the assumed slowly varying and spatially independent
background distribution function for species s, whose Fourier transform is

fR(s) _ fR(0)
k Ps 6k) (85)

To determine the fields defined in equation (2) and associated with the
respective parts of the dynamic polarization current, one proceeds as in
obtaining equations (75) and (76). Thus, one has for the fields produced by
the second- and third-order nonlinear dynamic polarization currents, respec-
tively,

3. G (k)' (86)
E(1) i G((k6 ( 2

dpkn W + is nm dpkm

and

E ( 2 )  i Gnm (k) jkm (3) (87)dpkn nm + i

Rext, substituting equation (81) in equation (86), one obtains

E sfdk1 dk 2 6(k -k - k 2 )
El") _ Gn (k) F e s .-
'pk == +i"S (i1 + i6)(w 2 + iS) (88)

x Sm (k,k1,k 2 )1 k kEk
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First symmetrizing equation (88) in (j,kl) and (1,k 2 ), changing variables of
integration from kI to -kI and k2 to -k 2 , and using the reality property of
the field, then equation (88) becomes

EmI i d1 kGnmlk) e s  6(k + k I + k2dpkn =2(w. + 1,6) 1 2)-i,),
~ X0~f (w - 6)(2 '6 I~ 1  I

(89)

x j+( k - - m ,ik2

Comparing equation (89) with equation (22) of Akopyan, 1 a disparity of a
factor of (1/2)(4w)(2w)-6 in the latter .s apparently due to explicit inclu-
sion there of a self-field factor of (1/2), the use of Gaussian units, and the
different Fourier transform and normalization conventions chosen there. The
factor of (1/2) is either a typographical error or results from explicit
inclusion of a factor of 1/2 associated with self-fields. For the -generic
expression, equation (89), it is preferable that such a factor be maintained
implicit until the formula is applied explicitly and a self-field factor of
(1/2) is needed. The factor of (4w) is due to the use of Gaussian units
there. One of the factors of (2w)- 3 is due to the differing Fourier transform
convention. Because of the different Fourier transform convention, the coun-
terpart of equation (81) would have an additional factor of (2w) - 3 . The other
factor of (2w)-3 is apparently due to the different normalization
of fR(O) there. In short, the fR(O) there is evidently (2w)3 times that
here. Alternatively, if the normalization is the same as that here then there
is an erroneous factor of (2R)- 3 appearing there. An isotropic plasma is
assumed there, in which case by equation (22) the Green's function is symmet-
ric, namely, Gm =Gnm. However as already noted the indices of G. are
interchanged in Akopyan and Tsytovichl in the definition of the Green's unc-
tion. It appears, however, that there are typographical errors there. The
complex conjugate sign on the fields and a factor of es are left out. Also,
there in the second-order nonlinear conductivity, one notes from equation (83)
that*

(s) i) ,, s)(k 2 0) _
Smj t(k,-kI,-k 2 ) = Smj1 (-k,kl,k 2 ) = -Sij )(kkk 2 ) ,(90)

where S(J(k,k 1 ,k 2 ) designates the conductivity tensor appearing in Akopyan
and Tsytovich. l '  In the last. step of equation (90) it is recognized that
.(J_,(k,kl,k2) differs from Smdj(k,k,k 2 ) here in that the first, complex de-

nominator w - It s + i6 in equation (83) here is implicitly w - t•s - i6

'A. V. Akopyan and V. N. Tsytovich, Bremsstrahlung in a Nonequilibrium
Plasma, Fiz. Plazmy, 1 (1975), 673 [Soy. J. Plasma Phys., 1 (1975), 371].

*H. E. Brandt, Nonlinear Dynamic Polarization Force on a Relativistic Test
Particle in a Nonequilibrium Beam-Plasma System, Harry Diamond Laboratories,
HDL-PRL-82-6 (May 1982) (to be published as HDL-TR-1994, 1983).
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there. 8 9 1* Thus, there is also a disagreement in overall sign between equa-
tion (89) here and equation (22) of Akopyan and Tsytovich.1 In summary
then, equation (22) of Akopyan and Tsytovichl is in error; it should have an
additional factor of (-es), the fields and the conductivity tensor on the
right-hand side should be complex conjugated, and the explicit additional
factor of (1/2) there should be omitted.

Next, substituting equation (82) in equation (87),

(2) i Gnm(k) dk dk2 dk3 6(k - k- k2 - k 3 )

dpkn f (W1 ~ + '6)(w 2 + '6)(w 3 + i6)
(91)

X(s) (k kl k0,k i •""
mij £ 1 1' 2 3 )Eki 2

jEk3-

Symmetrizing equation (91) in (i,kl), (j,k 2 ), (l,k 3 ), changing variables of
integration from k1 to -kJ, k to -k 2 , and k 3 to -k 3 , and using the reality

property of the field (t-k = __, then equation (91) becomes

dp(n) G(00 1 e dk+ dk2 dk 3 6(k + ki + k2 + k 3 )
dpkn i6(w + M) s - ')(w 2  - i6)(W 3  - i)

x[ . ( s ) (k,-kl,-k2,-k3) +r Z s) (k,_kl,_k3,_k2) :

mi j mi tj

(92)
f (s) (k, k2 _k 1 ,k3) + E (s) (k, k2 ,-k3 ,kl )  (92

mjil mji

+ E i( s ) (k,_-k3,_k1,k2 (s (kk kji *

Comparing equation (92) with equation (23) of Akopyan and Tsytovich, the
disparity of a factor of (1/2)(4w)(2w) - 9 in the latter is again due to an
explicit self-field factor of (1/2), the use of Gaussian units, and the dif-
ferent Fourier transform and background normalization conventions there.

1A. V. Akopyan and V. N. Tsytovich, Bremsstrahlung in a Nonequilibrium
Plasma, Fiz. Plazmy, 1 (1975), 673 [Sov. J. Plasma Phys., 1 (1975), 371).

8H. E. Brandt, On the Nonlinear Conductivity Tensor -for an Unmagnetized
Relativistic Turbulent Plasma, Harry Diamond Laboratories, HDL-TR-1970 (Febru-
ary 1982).

9H. E. Brandt, Comment on "Exact Symmetry of the Second-Order Nonlinear
Conductivity for a Relativistic Turbulent Plasma," Phys. Fluids 25 (1982),
1922.

*H. E. Brandt, Nonlinear Dynamic Polarization Force on a Relativistic Test
Particle in a Nonequilibrium Beam-Plasma System, Harry Diamond Laboratories,
HDL-PRL-82-6 (May 1982) (to be published as HDL-TR-1994, 1983).
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Alternatively if the normalization is instead the same as that here, then

there is an erroneous factor of (2w)- 3 appearing there. There is apparently

an error there. A factor of ies has been left out. Note that by equation -

(84) it follows that

()(k,-k I 0- (S)*-kikk ,k,3 (93)."-
-k21-3) 'r iv b ut ()

Also in the conductivity tensor Ti4£,(k,kl,k2,k3)given by equation (21) of

Akopyan and Tsytovich, 1 the first go complex denominators are implicitly w

- it.s - i6 and w + w- (1 + I i6, respectively, there.* Also, there

is no overall factor of i as there is in equation (84) here. Therefore,

(s i (_k,kl~k2,k3 = iT(S) "k:'.k(94
Zmij] 3)£kklk,3 = (94 21k'

Combining equations (93) and (94) then

it (k,-k-k 2 ,-k3 ) = -iTj0 *( ' k 2 ',k3 ) (95)

In summary then, equation (23) of Akopyan and Tsytovichl is also in error and
should also have an additional factor of (ies), the complex conjugate of the
fourth-order conductivity tensor there must be taken, and the explicit addi-
tional factor of (1/2) there should be omitted.

6. THE TOTAL FIELD .

Collecting equations (1), (2), and (3) the total field involved in the
bremsstrahlung scattering process and acting on the test particle is given by

(1) + (2) + M) + 1(2) (96)
VO +dpk dpk

Here (0) is the bremsstrahlung field whose dispersion relations are given by
equations (4) and (29) in the spatially isotropic case and equations (4),
(20), (38), and (39) in the case of isotropy in both ordinary space and mo-
mentum space. The stochastic properties are given by equations (49) and
(50). The fields (1, and (2  given by equations (77) and (78) are the
self-fields arisin? from the relativistic test particle's own motion. The

dps and'dpk given by equations (89) and (91) are the increasing order
fields produced by the nonlinear dynamic polarization current induced by the

test particle. The fields It") and ) are excited in nonlinear scattering
of ~ ~ ~ ~ dj tefedb th an pk to u

of the f ield by the induced dynamic polarization current. They involve the
three- and four-plasmon vertex, respectively, and play a key role in deter-
mining the nonlinear contribution to the collective bremsstrahlung process.

1A. V. Akopyan and V. N. Tsytovich, Bremsstrahlung in a Nonequilibrium
Plasma, Fiz. Plazmy, 1 (1975), 673 [Soy. a. Plasma Phys., 1 (1975), 371].

*H. E. Brandt, Nonlinear Dynamic Polarization Force on a Relativistic Test
Particle in a Nonequilibrium Beam-Plasma System, Harry Diamond Laboratories,
HDL-PRL-82-6 (May 1982) (to be published as HDL-TR-1994, 1983).

22

:---- • T;,*,:' .... , . .-.. --......-.... .-. ,......... . .. "--



.,,- ..4

7. CONCLUSION

An expression has been obtained, equations (96), (77), (78), (89), and
(91), for the total field involved in the collective scattering and brems-
strahlung of a relativistic test particle in a nonequilibrium beam-plasma
system. Dispersion relations, equations (4), (29), (20), (38), and (39), and
stochastic properties, equations (49) and (50), for the bremsstrahlung field
have also been obtained. These results are in agreement with those of Akopyan
and Tsytovichl with the exception of apparent typographical errors, and have
been used by them in their work on nonlinear bremsstrahlung in nonequilibrium
plasmas.

The present work, together with related work by the author, 10-14,*t*§ is
important for ongoing work in calculating collective radiation processes and
conditions for the occurrence of radiative instability in relativistic non-
equilibrium beam-plasma systems.

1A. V. Akopyan and V. N. Tsytovich, Bremsstrahlung in a Nonequilibrium
Plasma, Fiz. Plazmy, 1 (1975), 673 [Soy. J. Plasma Phys., 1 (1975), 371].

10H. E. Brandt, Symmetries of the Nonlinear Conductivity for a Relativistic
Turbulent Plasma, Harry Diamond Laboratories, HDL-TR-1927 (March 1981).

11H. E. Brandt, Exact Symmetry of the Second-Order Nonlinear Conductivity
for a Relativistic Turbulent Plasma, Phys. Fluids, 24 (1981), 1760.

12H. E. Brandt, Second-Order Nonlinear Conductivity Tensor for an Unmagne-
tized Relativistic Turbulent Plasma, in Plasma Astrophysics, Course and
Workshop Organized by the International School of Plasma Physics, 27 August to
7 September 1981, Varenna (Como), Italy (European Space Agency ESA SP-161,
November 1981), 361 (also to be published by Pergamon Press).

13H. E. Brandt, Symmetry of the Complete Second-Order Nonlinear Conductiv-
ity Tensor for an Unmagnetized Relativistic Turbulent Plasma, Journal of Math.
Phys. 24, (1983), 1332, 2250.

1 4H--E. Brandt, The Gluckstern-Hull Formula for Electron-Nucleus Brems-
strahlung, Harry Diamond Laboratories, HDL-TR-1884 (May 1980).

*H. E. Brandt, Nonlinear Force on an Unpolarized Relativistic Test Parti-
cle to Second Order in the Total Field in a Nonequilibrium Beam-Plasma System,
Harry Diamond Laboratories, HDL-PRL-82-7 (May 1982) (to be published as HDL-
TR-1995, 1983).

tH. E. Brandt, Nonlinear Dynamic Polarization Force on a Relativistic Test

Particle in a Nonequilibrium Beam-Plasma System, Harry Diamond Laboratories,
HDL-PRL-82-6 (May 1982) (to be published as HDL-TR-1994, 1983).

*H. N. Brandt, Theoretical Methods in the Calculation of the
Bremsstrahlung Recoil Force in a Nonequilibrium Relativistic Beam-Plasma
System, Harry Diamond Laboratories, HDL-PRL-83-6 (April 1983) (to be published
as HVL-TR-2009, 1983).

'other related work prepared in preprint form will be published later and
Is available from the author.
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